Application of Conformal Prediction in QSAR
نویسندگان
چکیده
QSAR modeling is a method for predicting properties, e.g. the solubility or toxicity, of chemical compounds using statistical learning techniques. QSAR is in widespread use within the pharmaceutical industry to prioritize compounds for experimental testing or to alert for potential toxicity. However, predictions from a QSAR model are difficult to assess if their prediction intervals are unknown. In this paper we introduce conformal prediction into the QSAR field to address this issue. We apply support vector machine regression in combination with two nonconformity measures to five datasets of different sizes to demonstrate the usefulness of conformal prediction in QSAR modeling. One of the nonconformity measures provides prediction intervals with almost the same width as the size of the QSAR models’ prediction errors, showing that the prediction intervals obtained by conformal prediction are efficient and useful.
منابع مشابه
Applying Mondrian Cross-Conformal Prediction To Estimate Prediction Confidence on Large Imbalanced Bioactivity Data Sets.
Conformal prediction has been proposed as a more rigorous way to define prediction confidence compared to other application domain concepts that have earlier been used for QSAR modeling. One main advantage of such a method is that it provides a prediction region potentially with multiple predicted labels, which contrasts to the single valued (regression) or single label (classification) output ...
متن کاملQSAR studies and application of genetic algorithm - multiple linear regressions in prediction of novel p2x7 receptor antagonists’ activity
Quantitative structure-activity relationship (QSAR) models were employed for prediction the activity of P2X7 receptor antagonists. A data set consisted of 50 purine derivatives was utilized in the model construction where 40 and 10 of these compounds were in the training and test sets respectively. A suitable group of calculated molecular descriptors was selected by employing stepwise multiple ...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملComparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists
Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression ...
متن کامل